Logo

Epsilon Ball(開球体)を使って極限を定義する

June 25, 2024
1 min read
Bn(a,r)={x  xRn,xa<r}B^n(\vec{a},r) = \Big\lbrace \vec{x}\ |\ \vec{x} \in \mathbb{R}^n, ||\vec{x} - \vec{a}|| < r\Big\rbrace

then:

limxaf(x)=A   =def   ϵ>0, δ>0, s.t.  Bn(a,δ)\{a}f1(Bn(A,ϵ)) \lim_{x \to a}f(x)=A\ \ \ \stackrel{\mathrm{def}}{=}\ \ \ \forall\epsilon>0,\ \exist \delta > 0,\ s.t.\ \ B^n(\vec{a},\delta) \backslash \big\lbrace \vec{a} \big\rbrace \subset f^{-1}(B^n(A,\epsilon))